PROJECT SYNOPSIS
Prostate cancer is the most frequent malignant neoplasm and the second cause of cancer death among men, with a steady increase in trend due to the overall length of life expectancy. Despite the technological progress of radiological instrumental investigation and the ultrasound systems needed to perform the biopsy, a false negative rate remains that swings around 30%. This project aims at effectively increasing the diagnostic capacity of prostate biopsy. To achieve this goal, an advanced biopsy robotic system is developed for high-precision testing and integration of an autonomous control, an optical fiber probe, an image fusion software, and a predictive software for detecting prostate cancer and its aggressiveness. The expected improvements concern a reduction of: the number of prostate tissue samples, the number of biopsies for the patient, the risk of complications associated with biopsy, the direct and indirect costs of healthcare expenditure to diagnose prostate cancer.